QBot 2 for QUARC

See it in action
Play Video

Download product info:

Autonomous Ground Robot with Robotics and Mechatronics Courseware

The Quanser QBot 2 for QUARC is an innovative open-architecture autonomous ground robot built on a 2-wheel mobile platform. Equipped with built-in sensors, a vision system, and accompanied by extensive courseware, the QBot 2 is ideally suited for teaching undergraduate and advanced robotics and mechatronics courses. The open-architecture control structure allows users to add other off-the-shelf sensors and customize the QBot 2 for their research in areas such as:

  • vehicle navigation and control
  • autonomous vehicles control
  • machine learning and computer vision
  • artificial intelligence
  • high-level control architecture of mobile robots
  • swarm robotics and more.

Build a Multi-agent Platform for Autonomous Vehicles Research

You can combine the QBot 2 for QUARC with other QBot 2 or QBot (previous generation of Quanser ground robots based on iRobot platform) units, QBall 2 and QBall-X4 unmanned aerial vehicles, or third-party autonomous vehicles, and build an open-architecture, multi-purpose, multi-agent platform for research. Such a platform will allow you to explore areas including collaborative control, adaptive control, fault-tolerant control, sensor fusion, fleet maintenance and more, working in an indoor lab environment. The Unmanned Vehicle Systems (UVS) Lab from Quanser provides a turn-key, integrated environment for implementing UVS controllers and algorithms without having to integrate disparate hardware and software resources.
Unmanned Vehicle Systems Lab
The Quanser UVS Laboratory consists of a ground control station with the QUARC real-time control software, QBot 2 ground mobile robot(s),
QBall 2 unmanned aerial vehicle(s), and the OptiTrack™ localization and tracking system
.

How It Works

The QBot 2 for QUARC incorporates the Kobuki platform from Yujin Robot, the Microsoft Kinect vision system and the Quanser wireless embedded target computer.

The Kobuki platform is driven by two differential drive wheels with built-in encoders. The platform includes a bumper sensor, built-in gyroscope and cliff sensors. The embedded computer target can access data from these sensors. The QBot 2 is powered by Lithium ion battery pack ensuring up to 3 hours of operation on a full charge.

The embedded target computer mounted on the platform uses the Gumstix DuoVero small-scale embedded computer to run QUARC, Quanser's real-time control software, and interfaces with the QBot 2 data acquisition card (DAQ). The QBot 2 DAQ integrates the DuoVero computer, the Kobuki platform and the Kinect sensor. Users can customize the platform for their needs by adding off-the-shelf sensors supported by QUARC, including digital (SPI, UART, I²C) and analog sensors.

The Kinect vision system is an integrated RGB camera and depth sensor capable of capturing RGB image data and 11-bit depth data at several resolutions and framerates. The Kinect is mounted on a structure that allows users to orient it horizontally or tilt it downwards for various viewing positions.

The QBot 2 is accessible through three blocksets that allow user to drive the vehicle, read from sensors and write to outputs, and access the RGB and depth image data from the Kinect sensor. The controllers are developed in Simulink® with QUARC on the host computer. The models are cross-compiled and downloaded to the target computer seamlessly through a wireless router (included in the system).

Quanser-developed Resources Included

QBot 2 for QUARC comes with Quanser-developed resources, including setup guide, user manual, laboratory exercises and pre-designed controllers. The courseware covers standard topics of undergraduate and graduate robotics and mechatronics courses, such as differential and inverse kinematics, odometric and probabilistic map-based localization, path planning, mapping and vision-guided control.

  • Low cost
  • Curriculum with independent exercises for robotics and mechatronics courses included
  • Compact system built on Kobuki platform, no assembly required
  • Wide range of sensors included (bumper sensor, wheel drop sensor, cliff sensor, 3-axis gyroscope, Kinect RGBD sensor)
  • Wheel encoder measurement for accurate measurement and more precise control, path planning and mapping
  • Customizable, allows for adding off-the shelf sensors supported by QUARC, including digital (SPI, UART, I²C) and analog sensors
  • Mounting holes for custom sensor-mounting structures or load carrying
  • Kinect mounting structure with manually adjustable tilt angle for varying visibility range
  • Low power on-board computer with Linux operating system for high-level, real-time decision making and task execution
  • Up to 3 hours of continuos operation on one battery charge
  • Available payload app. 4.5 kg
  • Easy integration of additional QBot (QBot 2, Qbot) and QBall (QBall 2, Qball-X4) units
  • Fully compatible with MATLAB®/Simulink®
  • Fully documented system models and parameters provided for MATLAB®/Simulink®
  • Open architecture design allowing users to design their own controllers
Platform Kobuki mobile base by Yujin Robot
Number of wheels 2
QBot 2 diameter 35 cm
QBot 2 height (with Kinect mounted) 27 cm
Battery life 3 hours
Maximum linear speed 0.7 m/s
Available payload app. 4.5 kg
Sensors included 3 digital bumper sensors
3 digital wheel drop sensors
3 analog and digital cliff sensors
3-axis gyroscope
2 wheel encoder inputs
2 wheel speed outputs
2 digital LED outputs
4 digital power enable outputs
2 analog motor current inputs
3 digital buttons
2 overcurrent sensors
1 Z-axis angle measurement (heading)
1 battery voltage sensor
1 Kinect RGBD sensor
Additional I/O channels available 8 reconfigurable digital I/O channels
4 analog input channels
2 encoder input channels
4 PWM output channels
1 SPI bus channel
1 UART serial port (interface 3.3 V serial device)
1 I²C serial bus channel
On-board computer Gumstix DuoVero Zephyr with integrated 802.11 b/g/n WiFi
Memory 1 GB DDR SDRAM, 32 MB Flash
QUARC maximum sample rate 1,000 Hz
Camera resolution 640 x 480
Depth sensing 11 bit
Depth sensor range 0.5 m - 6 m

Topics included in the Quanser-developed courseware:

  • Differential drive kinematics
  • Forward and inverse kinematics
  • Dead reckoning and odometric localization
  • Path planning and obstacle avoidance
  • 2D mapping and occupancy grid map
  • Image acquisition, processing and reasoning
  • Simultaneous localization and mapping (SLAM)
  • High level control architecture of mobile robots
  • Vision-guided vehicle control
The QBot 2 can be also used to teach other topics not included in the Quanser-developed courseware.

Your QBot 2 for QUARC system includes QUARC real-time control software and a router for wireless communication. To run the QBot 2, you will also need a Computer Vision System Toolbox™ (can be purchased from The MathWorks). MATLAB® and Simulink® licenses are not included.

For advanced localization requirements, Quanser engineers recommend using OptiTrack infrared camera system (can be purchased from Quanser).

Other products you might be interested in

QBall 2
QNET Mechatronic Sensors Trainer
Privacy Policy
©2017 Quanser Inc.